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Abstract

L is an extensible high-level intermediate language. Its intended application is
the construction of compiler back-ends and run-time libraries for high-level pro-
gramming languages with complex built-in data structures, such as Hilfinger and
Colella’s FIDIL language. L provides a general-purpose abstract machine, Basil,
and machinery for extending it. L has been used to define the abstract machine
INFIDEL, described in a separate report. We call L a “high-level” intermediate
language for several reasons. First, the target machine of L is a generic processor,
or multiprocessor, programmable in C. The “assembly language” used by L is C.
Second, L strives to be usable both as an intermediate language and a programming
language. The typical extension of L is expected to have a large run-time library,
also written in L. Many operators in the extended abstract machine are implemented
by function calls to this library.
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Chapter 1

Overview

L is an extensible high-level intermediate language. Its intended application is
the construction of compiler back-ends and run-time libraries for very-high-level
programming languages, such as FIDIL [HC89]. L provides a general-purpose
abstract machine, Basil, and machinery for extending it. L has been used to define
the abstract machine INFIDEL, described separately [Sem93].

We define L a high-level intermediate language for several reasons. First, the
target machine of L is a generic processor, or multiprocessor, programmable in C.
The “assembly language” used by L is C. Second, L strives to be usable both as an
intermediate language and a programming language. The typical extension of L is
expected to have a large run-time library, also written in L. Many operators in the
extended abstract machine are implemented by function calls to this library.

The basic L abstract machine, Basil, is essentially C with a few additions, most
notably automatic storage management. Basil can be extended as needed by adding
new operators and types.

New operators in the extended machine define functionality not present in
Basil. This functionality can be achieved in two ways. Expressions involving
extended machine operators can be rewritten using the L transformation system;
or they can be translated to calls to a run-time library.

L is useful when the ideal target machine has a large number of primitive
operators and types. L operators are lightweight: they are easy to define and
transform, or implement. The rewriting system is similar to Lisp macro expansion;
it is powerful but at the same time reasonably simple to understand and use. Many
type-specific optimizations can be performed during the transformation. A subset
of Basil (also extensible), called pure Basil, is executable during compilation, thus
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providing a mechanism for compile-time constant folding.

The overhead of learning to write L code or transformations is small for those
who know C and Common Lisp. The semantics of the primitive abstract machine
Basil are those of C. The syntax is that of Common Lisp. The transformation
system resembles Lisp macros. The programming language used to specify trans-
formations is Common Lisp.

We introduce L by first describing the Basil virtual machine, and then showing
how it is extended. At the end we include a reference manual for L/Basil. We
assume the reader to be familiar with C and Common Lisp.
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Chapter 2

Basil

Basil is a high-level universal assembly language. Roughly speaking, it has the
semantics of C and the syntax of Lisp.

The resemblance to C is dictated by engineering reasons. Basil is translated
into C in a straightforward fashion. There are high-quality C compilers available
for every processor on the market today. This is likely to remain true for the
foreseeable future. These C compilers are finely tuned to provide processor-
specific optimizations (such as register allocation) that would be expensive to
reproduce. Many architectural features that do not fit well within the C model
(for example, vector or parallel processing) are easily accessible from C, typically
through architecture-specific language extensions. There is, of course, a partial
or total loss of portability when using such features. Basil makes no attempt to
hide architectural differences beyond what C does. This is the task of the extended
virtual machine. The transformation from the extended machine to Basil is then
machine dependent; but there are so many machine-independent parts that any
other approach is wasteful.

The use of Lisp syntax is also dictated by engineering reasons. The extensions
mechanisms of L involve code analysis and rewriting. It is important that the
visible representation of code closely match the internal one. It would be difficult
to conceive a more concise syntax than that of Lisp for this purpose. And although
this syntax looks undeniably hostile to the uninitiated, it is simple and consistent,
and it takes surprisingly little training to acquire familiarity with it.

Basil serves not only as a target language, but also as a programming language
on its own, for writing run-time libraries. From this point of view, Basil has a code
transformation mechanism similar to that of Lisp-like languages. In most languages
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an abstract data type is defined by a set of types and a set of procedures operating on
objects of those types. To this, Basil adds type-specific optimizing transformations.
Thus transformation in Basil have a dual purpose: they define the mapping of a
high-level virtual machine into a low-level one (vertical transformations), and can
optimize library code within the same machine (horizontal transformations). The
transformation system is presented in chapter 3.

Another strong point of Basil is garbage collection. Its availability encourages
a Lisp-like programming style, in which it is convenient to define and manipulate
complex descriptors. Automatic garbage collection is not always the best solution
for large objects, such as those often found in scientific programs; for this reason
the malloc and free primitives of C are also available. The garbage collector
is meant to be used for small objects, typically used in descriptors. The two
mechanisms coexist gracefully and with a small distributed overhead.

This chapter attempts to give a concise description of Basil. A complete
description of all available Basil operators is given in Appendix B.

2.1 A Tiny Example

A Basil program to compute a factorial looks like this:

(deflfun (int fact) ((int x))

(return

(if (= x 0)

1

(* x (fact (- x 1))))))

and is compiled into this C code (or something very similar):

int fact(int x)

{

return x == 0 ? 1 : x * fact(x - 1);

}

The Basil translator attempts to produce readable C code that has a clear correspon-
dence to its Basil source: for instance, the name of a Basil variable is preserved,
if possible, in the translation. When a conflict may arise, the name is modified as
little as possible, typically by adding a numeric suffix. Debugging is done directly
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on the C output.1 Unlike C, expressions and statements may be freely intermixed
in Basil, and blocks may return values.

2.2 Syntax

A Basil expression is either a list, a symbol, or another Lisp object representing
a constant (integer, float, structure, etc.). When it is a list, its first element must
be either a symbol, called the operator of the expression, or a form whose first
element is slambda, which stands for simple-lambda. In the latter case, the form is
equivalent to the result of applying the simple-lambda to the arguments (the rest of
the form), using simple-lambda substitution rules. By these rules, every instance of
a formal in the slambda body is replaced by the corresponding unevaluated actual.
This is done with complete disregard of position. For example, in Common Lisp
we have:

((lambda (f x y) (f x y)) 4 5 6)! (f 5 6)

but in Basil we get:

((slambda (f x y) (f x y)) 4 5 6)! (4 5 6)

2.3 Values and Locations

As in C, certain Basil expressions have a meaning that is context-dependent, and
evaluate either to a location (a container where a value can be stored) or a value
(a data object of some type). Variables are interpretable both ways; so are the
array reference aref and record reference operators. The positions where such
expressions represent locations are the left-hand side of an assignment, a pass-by-
reference argument, and the initializing expression in a reflet.

Internally, such expressions are disambiguated during expansion. There are
different array reference and record reference operators for the value and the
location case; and variable references are either of the form (ref x), meaning the
location named by x, or (val x), meaning the value contained in that location.

1It is possible to insert debugging information into Basil and have it passed to the C compiler, but
not convenient to do so manually. The debugging facilities are intended for Basil code generated by
a compiler front-end (see section 2.11).
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2.4 Local Declarations

The let form is the main local variable-binding construct. It has a syntax similar
to Lisp’s let:

(let (fclauseg�) fexpressiong+)

A clause has the form ((type name) [initial-value]). The general rule is that the
syntax of a Basil name-binding form can be derived from the equivalent Lisp form
by replacing name, where name is the entity being defined, with (type name). In
most cases a shorthand is available: using name where (type name) is expected
stands for (t name), where t is the universal union pointer type (see section 2.7).
The precise shorthand rules for let are:

x �! ((t x))
(x e) �! ((t x) e)

The value returned by a let form is the value of the last expression in the body.
If the last expression does not produce a value (has void type), the let form does
not have a value either.

There are three variations of let: reflet, clet and slet.

A reflet form declares reference constants. They are names for assignable lo-
cations, like in C++. An initializing expression must be provided for each constant,
and it must be interpretable as a location.

The clet operator declares constants. The initializing expression in each
clause must be present. If the expression has a known value at compile time, then
the constant is replaced by that value in the body, but only where it is useful to do
so (see section 3.3.4). Operations that change the value of the constant in the body
have unpredictable effects.

The slet operator defines symbol macros. A clause has the structure (name
form). Occurrences of name in the body are replaced by form.

Local operators are defined with loplet and soplet. They are described in
section 3.2, together with their global equivalents deflop and defsop. Operators
should be defined freely, not just for extending the virtual machine interface, but
for expressing internal abstractions whenever convenient.
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2.5 Global Declarations

The operators deflfun and deflfun-pure define L functions. deflvar defines
global variables, and defsconstant global symbol macros. deflstruct defines
structure types (see section 2.7.2). There are also operator-defining operators,
described in section 3.2.

A deflfun form has the following syntax:

(deflfun (type name) (arg�) expression+)

Each arg has the syntax (fval | refg type name). These shorthands are avail-
able:

x �! (val t x)
(type name) �! (val type name)

Unlike Lisp, and rather more like C, a function must use an explicit return
statement to return a value.2

When the operator deflfun-pure is used instead of deflfun, it means two
things. It tells the L compiler that the function is side-effect free, or close enough
for our purposes; and it instructs it to compile a version of the function that can be
executed during compilation. So the function is translated into Lisp as well as C.
The Lisp version will execute successfully only if the function has been written in
pure Basil (see section 2.10). Any call to a pure function whose arguments have
a compile-time constant value results in the function being evaluated at compile
time, and the function-call form being replaced by the result.

2.6 Control Statements

Basil has a few control statements that derive from C, and a few from Lisp. Here
we give a brief overview of them. The reference manual has all the details.

2.6.1 Loops

The for statement is the one from C. The control variable in a for needs to be
declared separately. The dotimes statement instead is from Lisp, and creates a

2This choice is not strictly due to laziness: it helps in preserving a likeness between L source and
C output, therefore making debugging easier.
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new binding for the control variable. The control clause of dotimes may also
specify under which circumstances the body should be expanded inline. The
loop statement is from Lisp, while the while statement is from C. None of these
statements returns a value.

2.6.2 Conditionals

The if statement is the one of Lisp, and may return a value. When translating into
C, the L compiler decides whether to use the C if or the C conditional expression
(question mark-colon). The case statement is also from Lisp, and may return a
value.

2.7 Types

The types of Basil are those of C, with the addition of the type t, the universal
union pointer. The L programmer can also define new type expressions (see
section 3.3.2).

A caveat: the L compiler currently does not do any type checking—not count-
ing, of course, that done by the C compiler on the output files.

2.7.1 Universal Union Pointers

This type is used to emulate the behavior of dynamically-typed Lisp variables. It is
called t, which in Lisp denotes the union of all types. In a correct Basil program,
a variable with type t contains a pointer to a heap-allocated instance of a structure
defined by a deflstruct form (see section 2.7.2). Such structure instances are
garbage-collected, just as in Lisp.

2.7.2 Structures

The L form deflstruct defines new structure types, similarly to the defstruct
form of Lisp, and the structure declaration of C. Processing this form produces
several new operators related to the structure. As an example, if the structure has
name s and fields x and y, the following operators are defined:

make-s. The constructor function. This function takes two arguments, one for
each slot in the structure, and returns a boxed instance of that structure (that
is, a pointer to a heap-allocated instance) with its slots initialized from the
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argument values. This instance is garbage-collected. The return type of
make-s is t, and the returned value should be stored in a variable, or other
container, of type t, or other type that is eventually transformed into t.

s-p. The type predicate. It takes a universal pointer as its argument, an returns
true if the pointer points to an object of type s.

s-x, s-y. The boxed field accessors. They take a universal union pointer and
return the location of each slot in the boxed structure instance. This location
is interpreted as a value in the proper contexts.

s-x*, s-y*. The unboxed field accessors. These are the equivalent of the C
structure field selectors .x and .y.

A few more operators and Lisp functions are defined for each structure. They are
used to purify Basil code that, for efficiency considerations, is impure, but must
execute at compile time anyhow. They are described in section 2.10.

2.8 Lists

Basil has a few operators to manipulate Lisp-style lists. They have rather pre-
dictable names (cons, list, nconc, append, mapcar, etc.). The main difference
is that operators like mapcar and mapcan take an operator, instead of a function,
as their second argument. By necessity then all list-mapping operators generate
inline code. The operator may either be a symbol or an slambda form.

2.9 Separate Compilation

A Basil program consists of definitions contained in one or more files, also called
modules. Some modules may use definitions from other modules: for instance,
structure or operator definitions. If in order to process module x the compiler needs
information contained in module y, then module y should contain the directive
(need x).

All global entities (global variables and functions) are visible across all mod-
ules, without the need for C-style header files (they are generated automatically).
Section 3.1 describes the compilation process in some detail.
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2.10 Pure Basil

Pure Basil is a subset of Basil that can be translated and executed in Lisp (it is
that subset of Basil that can be easily translated into Lisp—again, an engineering
choice). Its purpose is to avoid having to maintain two sets of source code for
certain routines: one for the run-time library, the other for the compiler.

Of all Basil types, only pointer types are not available in pure Basil (except, of
course, t). Structure types are fully supported, both boxed and unboxed (unboxed
structures are emulated by boxed ones that aren’t allowed to be shared through
multiple pointers). Array types are also supported.

In some cases of practical significance, one would like to take advantage of C to
implement certain low-level abstractions efficiently using pointer arithmetic. It is
possible to maintain two separate implementations of these low-level abstractions,
one for C, the other for Lisp, and use them in pure Basil code, as long as they have the
same interface (see section 3.3.1). Target-specific transformations (target-case)
are useful in this situation. The details of these are given in the reference manual.

2.11 Debugging

Because of the way the Lisp reader works,3 it is not possible to debug Basil source
code directly. One must use the C debugger on the C output, much in the same
way one would use the assembly-language debugger on C code compiled without
debugging information. My experience has shown that this is a fairly easy task, to
the point that I often prefer to debug the C version of pure Basil functions, rather
than the Lisp version (it’s nice to have a choice—Lisp has better printing, but C
has better single-stepping).

When Basil is used as a target language, it is possible to pass debugging
information along. There are two types of information: source-position and name
information.

2.11.1 Source Position

Source-position information associates a file name and a range of positions to Basil
forms. It can be provided in two ways. If the compiler front end is written in Lisp,
the Basil code produced by it is Lisp objects (lists, mostly). Each code object may

3And because I did not have a compelling desire to rewrite it.
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be associated to a source-position structure. This contains a file name, and a
starting and ending line and character positions. Example:

#s(source-position :file-name "source.file"

:from-line 10

:from-char 0

:to-line 12

:to-char 4)

The association is done by the function (setf source-position).

If the front end is not written in Lisp, it can communicate with the L system via
ASCII text.4 The L reader assigns a special meaning to the dispatching character
macro #!. The construct

#! form fl fc tl tc

reads as form, and associates to it a source-position structure. The line and
character positions are given by to fl, fc, tl, and tc. The file name is taken from the
value of the Lisp variable *source-name*, which can be set wherever necessary
with an escape-into-Lisp form (eval).

If the front end does not provide character positions, the syntax

#2! form fl tl

saves space and time.

As the compiler transforms Basil code into C, it attempts to maintain source-
position information as much as possible.

2.11.2 Name

The name-information structure associates information to a source name. It has
the following fields:

scope A source-position structure indicating the range of positions in the
source file for which the association of the name with this structure is valid.
It should be nil if the scope is global.

4A binary format could be used for higher efficiency. A format that could make sense is that of a
Lisp fast-load file, even though it is system-dependent, and in most cases not documented.
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definition A source-position structure pointing to the definition of this
object.

target-name The name used by the front-end to refer to the entity named by the
source name.

other An association list containing other information to be passed to the debug-
ger (for instance, the source type).

Name information is passed to the debugger, possibly after changing the target
name. The function (setf name-information) is used to associate a name-
information structure to a name.

2.12 Caveats and Limitations

2.12.1 Debugging

None of the facilities described in section 2.11 on debugging is currently imple-
mented.

2.12.2 Pointer Discipline

The implementation of the conservative C garbage collector requires some disci-
pline on the programmer’s side.

The garbage collector considers an object to be in use if it can find a pointer to
the beginning of that object from some memory location that is potentially in use.
Such objects are left alone; the others may be reclaimed.

There are two situations in which the collector may recycle objects that the
programmer considers alive. We present them, together with the precautions that
must be taken.

Pointers to the middle of objects

The first problem occurs when the program allocates an object and subsequently
maintains a pointer to the middle of the object as the only reference to it. The
system assumes that such object is unreachable, and may incorrectly free it. The
program must maintain a pointer to the beginning of the object to insure its survival.

In some rare cases, a program may be optimized so that even when it appears
to maintain a variable pointing to the beginning of an object, the variable is dead
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and its value discarded. This may occur when the only use of the object consists
in writing and reading values in some location at a non-null offset inside it.

It is possible to modify the garbage collector to fix this, but we haven’t done it,
because this situation is easy to avoid, and the modification would both slow down
the collector and make it more conservative (and therefore less efficient).

Manually vs. automatically collected objects

Pointers to a garbage-collected object must always be stored in memory locations
(or processor registers) that the collector will scan during its search for potentially
in-use objects (the mark phase). The following areas of memory are not scanned:
blocks allocated with malloc (as opposed to malloc-gc), and static data areas
other than those listed in a data structure called the static root table.

Global variables of type t, or other types that may contain t pointers, are
automatically placed in the static root table, so the programmer must be careful
only when using casts. But if for instance the programmer needs temporary space
for a variable-length array of t, it may be unsafe to use malloc for this purpose,
and malloc-gc should be used instead. In this case it is a good practice to use
free-gc to free the temporary array, instead of letting the collector reclaim it. This
insures that a pointer to the beginning of the object does not become dead before
the object itself.

2.12.3 Static Analysis

The L compiler performs very little static analysis. L programs are (mostly)
statically typed, but the compiler does not check that declarations and uses are
consistent. In most cases type mismatches result in errors during the C compilation;
in some cases they cause run-time errors and the L compiler aborts. To debug in
these situations, the compiler should be run within an interactive Lisp session.

15



Chapter 3

L Extension Mechanisms

L offers a framework for constructing high-level abstract machines. Such machines
can be used as a target for a compiler, or programmed directly. They are built
mainly by adding new operators to the basic abstract machine Basil, described in
chapter 2. To explain how to define new operators, we need first to describe how
the L compiler works.

3.1 The L Compiler

3.1.1 Phases

The L compiler is organized in phases. Every phase is composed of one or more
passes. The first pass is called the expansion pass; it is followed by zero or more
ad-hoc passes. Each pass takes a piece of L code, and returns it, possibly after
transforming it and producing side effects.

Each phase is named by a Lisp keyword.1 The compilation of Basil into C
uses two phases: the :basil phase and the :c phase. Most of the compiling
transformations occur in the expansion pass of each phase. The ad-hoc passes
are reserved for transformations that are impossible or awkward to perform during
expansion.

Basil can be extended by adding operators to the :basil phase, or by adding
a new phase before that. The INFIDEL virtual machine is an extension of the
:basil phase. At this moment we have no experience in adding new phases.

1We use keywords, instead of simple symbols, because the former are package-independent.
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We suggest that part of the FIDIL compiler (the infamous “middle end”) could be
implemented as such.

3.1.2 The Expansion Pass

The expansion pass is where the L compiler does the bulk of its work. Operators
may have an associated phase-specific expansion function. This function is defined
in a manner similar to a Common Lisp macro, and it has similar semantics. During
the expansion pass, each L form is visited, and if its operator has an associated
expansion function, that function is called, passing the form to it. The form is
replaced with the object returned by the expansion function. If this object is a form
with a different operator, it is expanded again, if applicable. Then subexpressions
in that form are recursively expanded. This top-down order can be altered by an
expansion function that calls expand directly on subexpressions of the current
form.

As the expansion rules imply, an expansion function may return a form with
the same operator. However, expansion functions must be idempotent. The result
of multiple applications to a given expression must be the same as for a single
application: that is, a legal expansion function f satisfies f(f(x)) � f(x). For
instance, the following definition for the hypothetical operator op is erroneous:

(deflop op (x)

`(op (g ,x)))

When the expansion function returns t as its second value, the replacement and
its subexpressions are assumed to be completely expanded. This is an important
optimization, but it does not affect the semantics of expansion in a correct rewriting
system.

This organization has two useful properties. One is that all or most of the
information relative to an operator is contained in a single place, instead of being
spread across the description of several transformations involving that operator.
The other is that all the transformations are done in a single pass, instead of having
several transformation passes that can interfere with each other, and that are difficult
to order properly.

3.1.3 Code and Extensions

The unit of compilation in L is called the module and corresponds to a file, call
it mod.l. A module contains one or more L forms. The compilation of each
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form produces target code, or compiler extensions, or both. We define compiler
extension any information used by the compiler to process other forms. For
instance, an operator definition is purely an extension. The definition of an L
function is mostly code, but it also produces a small extension: the binding of the
return type to the function name. This binding is needed to determine the type of
a call to that function.

The compilation of a module produces a few files containing C code (_mod.c,
_mod.h, and _mod.d), a file with debugging information (_mod.db), and a file
containing Lisp code (_mod.cl) that, when loaded, recreates the compiler exten-
sions of mod.l. For efficiency, the extensions file _mod.cl can be compiled. For
more efficiency, it can also be preloaded into a Lisp image.

Expansion functions whose execution has side effects on the compiler state
must also record it in the compiler-extension file, by placing in it a form that
produces the same side effect. To help organizing this, the extension Lisp macro
evaluates its argument and outputs it to the compiler extension file. The form is
then replaced by its evaluated argument.

3.2 Operator Definition

The semantics of a new operator are specified in one of three ways: a rewriting
rule, a library function, or an output function.

Operator rewriting is similar to Lisp macro expansion. The rewriting rule of an
operator is a function that takes a form with that operator, and returns a replacement
form. This function is called the expansion function. Unlike Lisp, an L expansion
function may return a form with the same operator without causing an infinite loop.

Operators can also be implemented by library routines. Such operators may
still have an associated rewriting rule, which are typically used to recognize special
uses of that operator, whereas the library function implements the general case.

Operators that are neither rewritten nor implemented as library functions must
have an output function. As an extension mechanism, the output function is meant
to be used when the target architecture has features that are accessible only through
syntactic extensions to C. The argument to an operator’s output function is a form
with that operator. The function outputs C code, and returns no values.

Two more attributes characterize an operator, the type descriptor and the syntax
template.

The type descriptor specifies the type of an expression with that operator. It
can be an L type expression, when the operator has a fixed type; a type-computing
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function, when the operator is generic or overloaded; or the :expand keyword,
when the type should be computed by first expanding the expression. The function
l-type returns the type of an expression according to these specifications.

The syntax template must be specified for operators that are not transformed
during the expansion phase. It specifies the structure of an expression with that
operator, and enables the L programmer to define the equivalent of Lisp special
forms.

New operators are defined by the deflop macro. Because of its relevance, we
include here the definition of deflop from the reference manual:

deflop op args &key :type :template :output &rest body [Lisp macro]

deflop defines a new operator with name op. args specifies the arguments of an
expression with such operator, using the syntax of the argument list in a Common
Lisp macro definition. body is the body of the expansion function of the operator.
If there are no statements, the operator does not have an expansion function.

The :type keyword argument2 can be:

� an L type expression. Any expression with this operator has the given L
type.

� a Lisp function. This function takes a form with the given operator as
argument, and it returns an L type expression;

� the :expand keyword. This indicates that to compute its type, the expression
must be expanded first.

� the :first, :second, etc. keywords. This is a shorthand for a type function
that returns the type of the first, second, etc. argument.

The default value for the :type argument is :expand.

The :template keyword argument is a form that specifies the structure and
some semantics of an expression with that operator. Templates are used for various
kinds of code traversal during and after the expansion phase. If an operator has
an expansion function, and expands into a form with a different operator, then its
template is useless.

A template is a list of template symbols and other templates. The template
symbols have semantic significance as explained:

2These are not keyword arguments in the strict Common Lisp sense, because positionally the
precede the body of the expansion function. However, they are parsed in the obvious way.
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expr. An L expression that returns a value.

location. An L expression that returns a location: for instance, the left hand side
of an assignment operator, or a pass-by-reference parameter position.

name. A symbol that is not evaluated: for instance, a variable in the declaration
position of a let form, or other variable-binding constructs.

*. Some other kind of information associated with the form.

In addition, the following form has a special meaning:

(list template). Zero or more occurrences of template. This may only appear
as the last subform of a form.

The default value for the operator template is (list expr).

The two variations of deflop, deflop-c and deflop-lisp, define an expan-
sion function for the :c or :lisp phase. Type and template are not phase-specific.

3.3 Uses of the Expansion Mechanism

3.3.1 Conditional Expansion

The Lisp variable *target* is bound, during the :basil phase, to either :c or
:lisp, depending whether the current expansion has C or Lisp as its target (pure
Basil is compiled into both). A macro expansion function can check the value of
*target* and return different code for each case.

The Basil operator target-case packages this functionality concisely. It
takes two arguments. The first is code to use when compiling into C, the second
when compiling into Lisp.

3.3.2 Types as Expressions

Because types are treated as expressions in L, the operator definition and rewriting
mechanism can be used for types as well. For instance, the n-dimensional domain
type in INFIDEL is defined by this simple code:

(deflop-c domain (n)

(declare (ignore n))

t)
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This definition means that the type expression (domain n) is converted to t in
the :c phase. Its effect is that domain values are represented by universal union
pointers.

3.3.3 Compile-time Evaluation

Some information about the values of the operands of an expression may be
available at compilation time. When complete information is available—that is,
the values themselves are known—it may be convenient to evaluate the expression
and replace it with its value.

This situation occurs frequently in INFIDEL, for several classes of descriptor
objects. These descriptors are data objects describing control: on what data to
operate, how to partition large objects, etc. A simple example of what could be
considered a descriptor in FORTRAN is the upper bound of a DO loop with a
constant lower bound. INFIDEL descriptors are more complex.

Expansion functions are responsible for folding expressions. Two Lisp func-
tions are used as an aid to this purpose. The function lconstantp returns true
if its argument is L code with a known constant value. The function value-of

returns that value.

3.3.4 Demand-Driven Constant Propagation

Constant propagation is useful if the cost of reproducing a constant is lower than
the cost of maintaining it (storing and reloading, or keeping it in a register). When
this is not the case, constant propagation may still be useful when the knowledge
of a constant value provides opportunities for further optimization. The L operator
clet propagates expensive constants: those that are expensive to reproduce, but
may be useful to know. If the initializing expression for a constant c in a clet

clause expands into the constant value V , then (lconstantp c) ! t during
expansion of the clet body, and (value-of c) ! V . However, occurrences
of c in the body are not converted into V . Only if all occurrences of c disappear
during expansion, then the initializing clause for c is also removed.

This behavior is obtained by the use of the code-value operator, which takes
three arguments: code that generates that value (must always be present); the
value itself, or the keyword :unknown if it is not known; and an association list
of keyword-value pairs, available to the programmer to propagate type-specific
information. This operator has no expansion function in the :basil phase, and it
expands into its first argument (the code) during the later phase (:c or :lisp).
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Chapter 4

Reference

This chapter describes the Basil operators and the transformation mechanism of
L. The style and syntax follow the conventions of the Common Lisp reference
manual.

4.1 Program Structure and Transformation

A Basil/L program is composed of modules. Each module contains one or more
top-level forms. Each form may be a fragment of Basil code, or an L compilation
directive. Basil code is transformed into C or Lisp code, which is then compiled
and executed. The transformation is divided in phases, summarized in figure 4.1.

A phase is composed of passes. The first pass is the expansion pass, described
in 4.2. This is followed by zero or more ad-hoc passes. A programmer can extend
Basil by adding operators to the :basil phase, using deflop, or by adding a new
phase before it.

The :basil phase transforms Basil code into a nameless low-level form, which
can be fed to the :c or :lisp phases. The operators deflop-c and deflop-lisp

add operators to these phases: they are documented for completeness, but it is not
expected that they will be used in normal L programming.

4.2 Operator Rewriting

Forms are expanded top-down. A top-level form in a program is first read as a
Lisp object (a tree of lists and other Lisp objects). Then the expander (the function
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Figure 4.1: The Basil phases

expand) traverses it destructively and returns an expanded tree. A form whose
operator has an associated expansion function, as defined by deflop or one of its
variants, is replaced with the object returned by the expansion function. The form
returned is itself expanded unless one or more of the following situations occur:

1. the operator of the form does not have an expansion function;

2. the operator of the form is equal to the operator of the form before expansion;

3. the expansion function returns t as its second value, indicating that the form
and its subforms have been completely expanded.

After a form has been expanded, its arguments in expression positions are expanded
as needed, unless the expansion function has returned t as its second value.

Operator expansion functions are phase-specific. The deflop operator defines
the expansion function for the :basil phase. deflop-c and deflop-lisp define
the expansion function for the :c and :lisp phases.

deflop op args &key :type :template :output &rest body [Lisp macro]

deflop defines a new operator with name op. args specifies the arguments of an
expression with such operator, using the syntax of the argument list in a Common
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Lisp macro definition. body is the body of the expansion function of the operator.
If there are no statements, the operator does not have an expansion function.

The :type keyword argument1 can be:

� an L type expression. Any expression with this operator has the given L
type.

� a Lisp function. This function takes a form with the given operator as
argument, and it returns an L type expression;

� the :expand keyword. This indicates that to compute its type, the expression
must be expanded first.

� the :first, :second, etc. keywords. This is a shorthand for a type function
that returns the type of the first, second, etc. argument.

The default value for the :type argument is :expand.

The :template keyword argument is a form that specifies the structure and
some semantics of an expression with that operator. Templates are used for various
kinds of code traversal during and after the expansion phase. If an operator has
an expansion function, and expands into a form with a different operator, then its
template is useless.

A template is a list of template symbols and other templates. The template
symbols have semantic significance as explained:

expr. An L expression that returns a value.

location. An L expression that returns a location: for instance, the left hand side
of an assignment operator, or a pass-by-reference parameter position.

name. A symbol that is not evaluated: for instance, a variable in the declaration
position of a let form, or other variable-binding constructs.

*. Some other kind of information associated with the form.

In addition, the following form has a special meaning:

(list template). Zero or more occurrences of template. This may only appear
as the last subform of a form.

1These are not keyword arguments in the strict Common Lisp sense, because positionally the
precede the body of the expansion function. However, they are parsed in the obvious way.
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The default value for the operator template is (list expr).

The two variations of deflop, deflop-c and deflop-lisp, define an expan-
sion function for the :c or :lisp phase. Type and template are not phase-specific.

defsop name args form [Lisp macro]
defsop-c name args form [Lisp macro]
defsop-lisp name args form [Lisp macro]

Define a “simple” operator. The lambda-list args must be a simple list of symbols.
The replacement form for name is obtained by this process: occurrences in form
of symbols from lambda-list are substituted (via the Lisp function subst) with the
corresponding actual parameters, and the resulting form is returned. The type and
template for name are the default ones from deflop. Example:

(defsop 1+ (x)

(+ x 1))

loplet (f( name args fexprg+)g+) body [L operator]
soplet (f( name args fexprg+)g+) body [L operator]

These forms are used to define operators locally to a group of statements, just like
macrolet in Lisp. loplet resembles deflop, soplet resembles defsop. Two
examples follow:

(soplet ((int-square (x)

(let (((int tmp) x))

(* tmp tmp))))

(int-square 42))

(loplet ((square (x)

`(let (((,(l-type x) tmp) ,x))

(* tmp tmp))))

(square 42.0))

lconstantp object [Lisp function]

lconstantp is true if and only if its argument evaluates to a known value.
lconstantp is false when its argument is a symbol or an expression that would
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expand to a known value; to check if such objects have a known value, they must
be expanded first with the expand function. See also the tt value-of function for
examples.

value-of object [Lisp function]

value-of returns the value, as a Lisp object, of an L expression that evaluates to
a constant. Examples:

(lconstantp 42) --> t

(value-of 42) --> 42

(lconstantp (quote 42)) --> t

(value-of (quote 42)) --> 42

(lconstantp (code-value '(val x) 42 nil)) --> t

(value-of (code-value '(val x) 42 nil)) --> 42

(lconstantp 'x) --> nil

l-type l-expr [Lisp function]

l-type returns the type of l-expr if it can be computed in the current environment;
otherwise it causes an error.

expand code [Lisp function]

expand returns the expansion of code using the current operator definitions. This
function is useful in writing expansion functions, particularly those that perform
constant folding. For instance, a constant folding + can be defined as follows:

(deflmacro + (x y)

(values

(let ((x (expand x))

(y (expand y)))

(if (and (lconstantp x) (lconstantp y))

`(quote ,(+ (value-of x) (value-of y)))

`(+ ,x ,y)))

t))

The macro returns the second value t to indicate that no further expansion is
necessary.
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code-value code value other [L operator]

A code-value form is used to propagate values and other attributes of values in a
on-demand fashion. code contains L code. In the target-specific phase, a code-
value expression is replaced by code. In the :basil phase, the constantness of a
code-value form is determined by value. When the value of value is :unknown,
the value of the form is unknown; in all other cases, the value field represents the
compile-time value of the object.

Code-value forms, together with the functions lconstantp and value-of,
allow a form of constant propagation in which constant values are propagated only
to the points in which they are effectively used. This is useful when reconstructing
the constant value at run time is expensive.

other is an association list of keyword-value pairs, and it is available to the
programmer for type-specific information. See also deflstruct for an example
of its use.

4.3 Variables, Constants, and Blocks

Symbols in an expression position are variables or symbol macros. Their meaning
is either global or local, and it can be redefined locally.

defsconstant name form [Lisp macro]
defsconstant-c name form [Lisp macro]
defsconstant-lisp name form [Lisp macro]

After one of these definitions, occurrences of name in an expression position are
replaced with form during the corresponding expansion pass.

slet (f(var form)g+) fexpressiong+ [L macro]

Occurrences of each var are expanded with the corresponding form within the body,
except where var is rebound by another variable-binding form. The expanded code
is a let form with an empty argument list.

clet (f((type var) form)g+) fexpressiong+ [L operator]

Each form is expanded, and if it expands into a constant, the corresponding var is
bound to a code-value form with value set to that constant, and code set to var.
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Occurrences of var in the body expand into that code-value form.

If after expansions of the body all occurrences of var disappear, and form

expanded into a constant, then the initialization clause is removed.

let (f((type var) [form])g�) fexpressiong+ [L operator]

let is the main local-variable binding construct. The structure of the variable
declarations is similar to that of a Lisp let, except that the variable is replaced by
the pair (type var), where type is an L type expression.

When type is t, the pair (t var) may be abbreviated to var. Also, if var
has type t and is not initialized, the parentheses enclosing var may be dropped.
Examples:

;;; x has type int and is initialized to 42.

(let (((int x) 42)) ...)

;;; x has type int and is not initialized.

(let (((int x))) ...)

;;; x has type t and is not initialized.

(let (x) ...)

;;; int has type t and is initialized to x. Eh? What?

(let ((int x)) ...)

The last example is not recommended.

reflet (f((type var) form)g+) fexpressiong+ [L operator]

Each form must be interpretable as a location. The compiler makes var an alias for
the location denoted by form in the body. var can be used both to store and retrieve
the value in that location.

genvar &optional string [Lisp function]
genvar-global &optional string [Lisp function]

genvar returns a symbol with a name that is unique within the current function.
The symbol can be used to represent local variables. genvar-global returns a
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symbol with a globally unique name. The optional string argument is used in
forming the name.

The naming convention in L is that names beginning with an underscore are
reserved for variables generated during macro expansion. Of them, the ones ending
with an underscore are reserved for names that need to be globally unique.

4.4 Types and Structures

The primitive types of L are those of C (char, int, float, double, void), with the
addition of type t, the universal union pointer. Derived types can be obtained with
the pointer, array, and fun constructors, and the defltype and deflstruct

forms.

Types are treated just like expressions during macro expansion.

t [L type]

Variables of this type may point to any structure defined by deflstruct, and
allocated by its structure constructor. This is the L equivalent of Lisp’s dynamic
typing. The type t makes it easy to define “generic” functions and data structures,
such as a list type. Objects of type t are garbage-collected in the C execution
environment.

pointer type [L type operator]
array length type [L type operator]
fun (fargtypeg�) return-type [L type operator]

These constructors produce C’s derived types.

defltype name type [L operator]

This construct makes name equivalent to type, similarly to C’s typedef.

deflstruct name ffieldg+ [L operator]

deflstruct defines the L structure name and creates several functions and oper-
ators. Each field is a (type field-name) pair, or a single field-name, which stands
for (t name). Example:
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(deflstruct point

(int x)

(int y))

The next few entries describe the operators defined by deflstruct.

alloc-name [L operator]

This function allocates an uninitialized instance of structure name, and returns a
pointer to that structure. The return type of this function is t. Calling this function
is the standard way of allocating instances of name on the heap.

name-p pointer [L operator]

name-p returns true if pointer points to a structure of type name, otherwise it
returns nil.

name-field pointer [L operator]

name-field is the field selector operator for the field field of name when accessing
the structure through a pointer. pointer should be of type t and should point to an
instance of name.

If pointer expands to a code-value form, the field selector checks if the structure
represents a partial value. This is true if the other field of the form contains a
(:partial-value . instance) pair. instance must be an instance of structure
name with each field initialized either to :unknown or its compile-time value. If
the field field of instance is not :unknown, the field selector form expands to that
field, otherwise it remains unchanged.

name-field* expr [L operator]

name-field* is the field selector for an instance of name. expr should be of type
name.

make-name ffieldg+ [L operator]

This operator is a By Order of Arguments (BOA) constructor for structure name.
When any of its arguments expands to a constant, make-name expands to a code-
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value form representing a partial value (see name-field above). (This functionality
is currently unimplemented).

make-name ffieldg+ [L function for C]

This function is a By Order of Arguments (BOA) constructor for structure name,
and is available only to the C output.

expand-name struct [Lisp function]

A Lisp function that converts a Lisp structure instance into C code. struct should
be an instance of structure name. This function translates structure instances into
C code during the :c expansion pass.

This concludes the descriptions of L operators created by deflstruct.

type-p object type [L operator]

type-p is true if object is a pointer to a structure of type type, otherwise is false.

new type [L function for C]

new allocates space for a structure of type type, just like alloc-type, but is only
defined in C.

new* type size [L function for C]

new allocates space for a variable-sized structure of type type. It is only defined in
C.

4.5 Functions and Statements

L functions are semantically similar to Lisp functions, except the value must be
returned by a return statement.

deflfun (type name) arglist fstatementg+ [L operator]
deflfun-pure (type name) arglist fstatementg+ [L operator]
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deflfun defines an L function with name name and return type type. arglist is a
list triplets(mode type name), where mode is either val or ref, denoting argument
passing by value or by reference, type is the argument type, and name the argument
name.

deflfun-pure is like deflfun, but makes a Lisp version of the function
available for execution during compilation. Furthermore, when all arguments to a
call to a pure functions are compile-time constant, the call is evaluated during the
expansion pass, and it is replaced by the result.

Both deflfun and deflfun-pure define an operator with the same name of
the function. This definition can be overridden by a deflop after the function
definition. Should it occur before, its effect is obliterated by the deflfun.

4.5.1 Control Statements

if clause then else [L operator]
when clause fstatementg+ [L operator]
unless clause fstatementg+ [L operator]
for (init test repeat) fstatementg+ [L operator]
while clause fstatementg+ [L operator]
loop fstatementg+ [L operator]
break-loop [L operator]
return [expression] [L operator]
case keyform f(f(fkeyg�) j keyg fformg�)g� [L operator]

Most of these statements have obvious meaning in C or Lisp. They all have void
type, except if and case, which may return a value. return is the C return, not
the Lisp return. loop is an infinite loop. break-loop transfers control to the first
statement that follows the enclosing loop.

dotimes (var count &key inline inline-limit) fstatementg+ [L operator]

dotimes works like in Lisp, but it also allows the two keyword parameters inline
and inline-limit. If count expands into a constant, and inline is t, or inline-limit
is specified and count is less or equal to inline-limit, then the loop is expanded in
line. The default value for inline is nil, and for inline-limit is 1. tt dotimes has
void type.
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dotimes* (var count) fstatementg+ [L operator]

dotimes* works similarly to dotimes, except it has no keyword parameters, and
var must already be declared.

4.5.2 Assignments

setq place value [L operator]
setf place value [L operator]

setq and setf are equivalent. They store a copy of value in place.

incf place &optional delta [L operator]
decf place &optional delta [L operator]

These are the same as in Lisp.

4.5.3 Arithmetic operators

The standard arithmetic operators are available.

4.6 Lists

The following list-related operators are available:

cons car cdr [L operator]
car list [L operator]
first list [L operator]
cdr list [L operator]
rest list [L operator]
last list [L operator]
push element list [L operator]
pop list [L operator]
nconc flistg� [L operator]
append flistg� [L operator]
mapcar operator flistg+ [L operator]
mapcan operator flistg+ [L operator]
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mapc operator flistg+ [L operator]
dolist (var list &key inline-limit)L operator fexprg+ [L operator]
length list [L operator]
nreverse list [L operator]
sort-list function list [L operator]

The syntax and semantics of these operators is identical to their synonymous ones
in Common Lisp; with the exception of the mapping operators (mapcar, mapcan,
mapc) which take an operator (or slambda form) as their second argument; and
dolist, which does not return a value, and takes a keyword argument specifying
a maximum list length for inlining the loop. The function argument of sort-list
must be an operator that is implemented as a function.

4.7 Compilation

An L program is typically developed in separate files, also called modules. L has
no mechanism for hiding information across modules: a function declared in a
module is visible from all other modules.

Files containing L sources have the suffix .l. Compiling module.l pro-
duces several files: _module.c, containing C function and variable definitions;
_module.h, with C declarations to interface between modules; _module.d, with
auxiliary definitions for C compilation; and _module.cl, which contains compiler
state information necessary to compile other modules.

module.c includes at its beginning the file all.h. For a system composed of
the n modulesm1:l; : : : ; mn:l, the programmer must make the file all.h include
m1:h; : : : ; mn:h, and the file all.d must include m1:d; : : : ; mn:d.

The forms in each L source file are read and processed one by one by the
function l-compile-form.

The special variable *auxiliary-c-forms* is set to the empty list before
processing the first form in a file. Macro expansion functions can add definitions
to this list. After processing the last form in the file, the forms contained in it
are output as C code. To insure that these forms are expanded in the correct
environment, the programmer should manually process them by applying expand

and translate-into-c to each.

l-compile fmoduleg+ [Lisp macro]

l-compile compiles the code contained in the file(s) module.l. Its arguments are
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not evaluated.

l-compile-module fmoduleg+ [Lisp function]

This function compiles one or more modules. Its arguments must be symbols.
The file names of the modules are obtained by appending ".l" to the lower-case
version of the name of each symbol argument.

l-compile-form form [Lisp function]

Compile the L form form.

need fmoduleg+ [L operator]

This form speficies that to compile correctly the current module the compiler needs
information contained in module.

eval form [L operator]

This is an escape-into-Lisp mechanism. The expansion of this form is obtained by
evaluating form as a Lisp form.

literal string [L operator]

This is an escape-into-C mechanism. string is output literally into the C output file.

target-select c-code lisp-code [L operator]

The expansion function of this operator returns c-code when the final target of the
compilation is C, lisp-code when it is Lisp.

extension form [Lisp macro]

The argument of an extension form must be a function call form. A form that
evaluates to the same value as the function call form is output to current compiler
extension file. The replacement of the extension form is its argument. Example:

(let ((x 'x-value)
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(y 'y-value))

(extension (f x y)))

is replaced by (f x y), and the form (f 'x-value 'y-value) is output to the
extension file. The arguments of f must have a printable representation that can be
read back in.

*target* [Lisp variable]

This variable is bound to either :c or :lisp, depending on the current compilation
target.

*auxiliary-c-forms* [Lisp variable]

*auxiliary-c-forms* is set to nil at the beginning of the compilation of a
module. After all the forms in the module have been processed, the contents of
this variable undergo phase :c transformations and is output. An L form should
be placed in this list only after application of translate-into-c. Example:

(push (translate-into-c form) *auxiliary-c-forms*)

translate-into-c form [Lisp function]

translate-into-c returns an L form that can be directly passed to the :c phase
for further processing. It should be used with *auxiliary-c-forms*.
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